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ABSTRACT

This paper presents a comparison of various classi cati@thm
ods for the problem of recognizing grasp types involved ijecb
manipulations performed with a data glove. Conventionaldem
holds that data gloves need calibration in order to obtatuiate
results. However, calibration is a time-consuming procagser-
ently user-speci ¢, and its results are often not perfectcdntrast,
the present study aims at evaluating recognition methoaisdb
not require prior calibration of the data glove, by using rsen-
sor readings as input features and mapping them directlyfto d
ferent categories of hand shapes. An experiment was carigd
where test persons wearing a data glove had to grasp phgdical
jects of different shapes corresponding to the variouspgsgees of
the Schlesinger taxonomy. The collected data was analyziéd w
28 classi ers including different types of neural netwarllscision
trees, Bayes nets, and lazy learners. Each classi er wagzath
in six different settings, representing various applmatcenarios
with differing generalization demands. The results of thisrk
are twofold: (1) We show that a reasonably well to highlyakle
recognition of grasp types can be achieved — depending othethe
or not the glove user is among those training the classi evene
with uncalibrated data gloves. (2) We identify the best @enf
ing classi cation methods for recognition of various gragpes.
To conclude, cumbersome calibration processes beforaigtiod
usage of data gloves can be spared in many situations.

Keywords: Data Glove, Calibration, Grasp Recognition, Classi -
cation Methods

Index Terms: 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; 1.3.7 [Computer Gicg):
Three-Dimensional Graphics and Realism—[Virtual Redlity

1 INTRODUCTION

A desirable goal for many applications of immersive VR isshe-
port of natural virtual object manipulations that closebsemble
the manipulation of real objects. Natural object manipafet are
e.g. fundamental in virtual prototyping for accurate siatign of
the operation or assembly of virtual product models [24]miSi
larly, the imitation of a VR user's manipulation of virtuabjects
has been proposed as a means for programming assembly bgbots
demonstration [1] and for generating virtual charactemations
that faithfully reproduce the user's interactions withrseebjects
[13]. To support such natural manipulations, it is cruckadttthe
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VR system is able to differentiate between various typesuofidn
grasping.

VR-based manipulations of virtual objects are commonlyifac
itated through data glove-type input devices, such as Isimes
Cyberglove. In order to recognize a user-performed graaspsén-
sor readings of the data glove have to be processed, anadyzed
matched towards one of a set of known grasp types. Typidaahy,
fore using the data gloves a time-consuming calibratiorsetia
needed in order to account for differences in hand size amyplopr
tion when mapping from raw sensor readings to joint angledbef
user's hand. How an optimal calibration can be achievedilis st
an unsettled question. The more accurate methods rely emext
vision systems, which themselves need to be calibrated.

A main motivation for the work described here is to nd out
whether it is possible to recognize a range of hand shaps tjyoe
ing manipulations directly from raw sensor input withous thter-
mediate joint angle representations. If successful, thebeuisome
calibration phase could be spared, enabling an immediaigupr
tive use of data gloves in immersive VR systems in many sdoat
where reliable classi cation of hand shapes (rather thaacere-
construction of joint angle values) is suf cient for the dipption.

A second motivation for this work is to evaluate the perfoncel
of different classi cation methods. The aim is to identifyetclas-
si er (or family of classi ers) which is suited best for the@blem
domain of “grasp recognition from raw data glove sensor "data
The reason behind this are the so-called “no free lunch” (NRé-
orems [23]. The NFL theorems state, that averaged over sdiipie
problems, all algorithms perform exactly equal. As a consege,
there can not be one classi cation technique, which is ogtifar
all classi cation tasks. However, when restricting thessleca-
tion problem to a particular domain, there might well be asi&r
(or a set of classi ers) which outperforms all others. Tlgads to
the conclusion that selecting a good classi er should betham
an empirical evaluation in the respective problem domaailof-
ing this reasoning we systematically evaluated severasctation
techniques for this problem domain. We have experimentéa avi
total of 28 classi ers in various settings to nd out whichaslsi-

ers are suited best for this type of problem. The settingsae
different possible use-cases and application scenamathid way,
informed decisions can be made about whether or not to use a pa
ticular classi er in a given VR scenario.

2 RELATED WORK

Various research in the elds of medicine, robotics, depeten-

tal psychology and VR has led to the formulation of grasp tax-
onomies: categorizations of grasps based on form or fumctm
early taxonomy is described in Schlesinger's work on cams$tr
ing arti cial hands [20]. He characterized which functiditias in
prosthetic hands are needed to grasp certain objects. iByitoh
this work, Taylor and Schwartz [21] de ned English namestfor
most important grasps investigated by Schlesinger: cxitiad tip,
hook, palmar, spherical and lateral grip (see Figure 1 famgles).



Napier [16] researched the basic task requirements of grasg
differentiated between two basic grasp types: the powenghich
clamps an object rmly under usage of the palm and the pregisi
grip where the thumb and other ngers pinch the object. Later
Cutkosky [7] investigated optimal grasp operations indaes and
developed a taxonomy for categorizing feasible grasp typ#ss
domain.

sensor values to actual joint angles, a complex calibrati@hcon-
version process is necessary which involves several Igitfal the
easiest case of measuring the exion of the interphalanjpéats,
a direct linear conversion from one sensor value to a joigteacan
be performed. This involves an offset value (sensor valuenithe
joint is considered straight) and a gain factor (multiptilea factor
to convert bend value to radians/degrees). Even for thiplsish

In order to enable the computer to recognize and match a user-method of mapping, offset and gain values have to be detednin

performed grasp onto a corresponding class from the taxgnom
techniques from the area of pattern classi cation can béieghpin
Friedrich et al. [11] a Neural Network classi er and the Cagky
taxonomy were used for this purpose, yielding a classiaatiate
of about 90% for grasps performed using a data glove. Acngrdi
to Ekvall and Kragic [9], a Hidden Markov Model (HMM) based
method was even able to achieve recognition rates of close%o
for single user settings. However, recognition rates dedpgig-
ni cantly (to about 70%) for settings with multiple users Ale-
otti and Caselli [1] a nearest neighbor classi er is usedanjaonc-
tion with heuristic rules. The task of these rules is to disiuate
between similar grasps. In this way, recognition rates &b 3dr
seen users (users trained with) and 82% for unseen users (e
trained with) were achieved. Applying a classi er to unsersers
always bears the risk of signi cantly lower recognitionest This
stems from the fact that even identical postures can prodiffee-
ent sensor values when the sizes of the subjects' hands @ary.
way to tackle this problem is to perform a calibration precas in
Kahlesz et al. [14]. However, this process can be complexe-i
consuming and in itself error-prone. In a recent paper bysBor
and Indugula on realistic virtual grasping [4], it was neticthat
even time-consuming calibration procedures do not prodice-
rate results. Another way to solve this problem is to usesclas
cation algorithms which are able to generalize over a lagje
users. However, it is still an open question which clasdiaa
techniques can achieve such generalization as no thoraumpas-
ison has been conducted so far. Another interesting questiich
needs further investigation is the performance of claggian tech-
niques in different settings; e.g when new objects are gesp

In contrast to previous research, the work presented imptpsr
does not focus on a particular classi cation algorithm oesigular
setting. Instead, we try to compare the performance of a weidge
of classi ers in several settings within the domain of gratgssi -
cation. Such a comprehensive evaluation enables us to dndous
conclusions about the applicability and the success o$ictagion
with uncalibrated data gloves.

3 DATA ACQUISITION

In the data acquisition phase of our study, sensor value wlasa
captured from a couple of users, performing all the grasps of
Schlesinger's taxonomy [20] on several real objects. Aféeord-

ing the raw data, a rst analysis was done on the basis of Saramo
mapping of a Self-Organizing Map [15]. The experiment seng

the results of the data analysis are presented after a §hstitation

of how the hand posture is measured by the type of data gl@ek us

3.1 Data Glove

The data glove used for recording was a 22-sensor wirelelssrcy
glove 2 by Immersion, Inc. (see Figure 1). This type of datel
measures hand posture through a number of resistive bestge
sensors which are placed in key locations (mostly joint fomss)
on a stretch fabric glove. Each of the sensors measures @sram
of bending around one axis (the at side) in the form of an 8-bi
value between 0 and 255, which is almost linearly propodida
the bend angle.

It is important to note that the measured sensor vatieesot
directly represent nger joint angle values. For the magpirom

for each single sensor in a tedious process. Due to crogsiagsi
between the sensors, however, more complex forms of ctifbra
are necessary to achieve a satisfactory delity. In Kahktsd. [14]
some recent calibration techniques are summarized. Sinmceln
jective was to spare any calibration process, the raw seesoF
ings, as transmitted by the Cyberglove 2, were used dirastfiea-
ture vector for hand posture classi cation.

3.2 Experiment Setup

For each of the six grasp types, four objects of various shajgee
grasped. Table 1 lists the objects used for each grasp tignaerl
shows pictures of some of these objects.

| Grasp Type] Objects |
Cylindrical Bottle, Hammer, Flower Pot, Coffee Jug
Hook Plastic Case, Toolbox, Backpack, Bag
Lateral Floppy Disk, Key, ID Card, CD Cover
Palmar Small Box, Matchbox, Tape Roller, PDA
Spherical Tennis Ball, Egg-shaped Case, Bowl, Mouse
Tip Nail, Pencil, Small Eraser, PDA

Table 1: The grasp types and corresponding trial objects.

For each object, two trial sequences were performed. In the
rst sequence, the object was grasped ve times, with thgetls
grasping hand starting from a xed position on the table. iDgr
this whole sequence the subject sat at the table. In the desmn
qguence, the object was again grasped ve times. This time; ho
ever, the hand starting position was varied randomly, aghesb-
ject's orientation on the table. For larger objects, like thol box,
the subject was standing during this sequence. The captiated
consisted of all the 22 glove sensor values representindpahe
posture at the “peak” moment of the grasp — as opposed to a se-
guence of sensor values of a full grasping movement. Thisembm
means the time the test subject's hand rmly held the objedtthe
ngers were at rest. The peak moment was determined manually
by the test subject by pressing a button on the dataglove.

The whole data acquisition process was conducted with six te
subjects. Each subject was adult, male and right-handetbtdh
6 (test subjects) 24 (objects) 10 (grasps per test subject and
object) = 1440 data items were collected.

3.3 Data Visualization

Before the classi er evaluation was executed, it proveériasting

to rst take a “glimpse” at the data. This helped to get an idéa
the problem dif culty, to assess the quality of the recordieda or

to make rst decisions concerning a suitable classi er. Tatly,

the recorded data is in a higher-dimensional space whiclesnak
human inspection dif cult. For inspection and analysis gnses

it is more convenient to create a visual representation efetk
periment data. This can be achieved through a projectiomef t
high-dimensional pattern space onto two dimensions. Cammo
techniques for such projection tasks are the Self-Orgagikap
and Sammons' mapping [15]. Figure 2 shows a projection of our
experiment data using a combination of the two techniqudse T
projection is distance preserving, which means that paiftich
are near to each other in the higher dimensional space wil la¢
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Figure 1: Images of some of the objects used during the grasping experiments with their corresponding grasp types.

Figure 2: Sammons mapping of a Self-Organizing Map representing
the data projected onto a two-dimensional space.

near to each other in the projection. It can be seen that thersp
ical grasp forms a particular region in the upper part of trem
This region can neatly be separated from regions repreggoither
grasps, which indicates that classi cation of this gragpetys par-
ticularly easy. Although other grasp types also occupyiqaer
regions on the map, they are much more intermixed. This yield
complex decision boundaries. For example, the classesdtig
“palmar” cannot cleanly be separated from each other. Whkat a
becomes visible, is that “cylindrical” grasps are scattetegough-
out the map. This fact is particularly interesting, as itrapé es
the hard separability of the Schlesinger grasps based ahsteape
only. It follows from this observation that we can expectssieca-
tion to be more error-prone for cylindrical grasps.

4 CLASSIFIER EVALUATION

A set of 28 different classi ers from the freely available Kéedata
mining software package [22] has been evaluated. Theserwere
in an “out of the box” fashion, i.e. with default settings amithout
any parameter optimization. The tested classi ers can badly
divided into ve categories — probabilistic methods, fupat ap-
proximators, lazy learners, trees, and rule sets: (1) PibistEc

methods such as the naive Bayes classi er [10] or Bayes 6ts [
learn to discriminate between classes by building up pritibab
models of each class. Using Bayesian inference the pratyadtfila
new data item belonging to a particular class can be compéiad
example, the naive Bayes classi er learns a model of thaitrgi
data by estimating class probabilities and conditionabphilities
of the variables. Together with the Bayes theorem, thesgesal
can be used to compute the probability of a data item belgnigin
a particular class. The only “naive” assumption (hence traea)
that is being made, is that all variables of a data item areuatiyt
independent. (2) Function approximators learn the parusef a
function which takes the new data item as an input and retins
class as an output. Well-known representatives of this ofpa-
gorithm are Multilayer Perceptrons and Radial Basis Nekw§2].
Here, the approximated function is represented by a seteftion-
nected neurons. The back-propagation algorithm [12] camske
to train such networks in order to minimize the squared esfaip-
proximation. (3) Lazy learning techniques [3] postpone &pe
of learning until a request for classi cation of a new datanit is
received. When such a request is received, a database aiysiv
seen examples is searched for a set of examples, which aestlo
to the new item (w.r.t. a given distance metrics). (4) Tresst
ers, such as decision trees [17], try to break up the clasaion
task into a hierarchy of simple decisions at whose end thédea
cision determines the class. As the name suggests, thartigr
has the form of a tree, whose nodes represent local decisibile
leafs represent the classes. (5) Finally, rule inductiothots [18]
create sets of logical rules for determining the class ofréiquéar
item. Ridor [19], or “Ripple Down Rule”, is a representatsigo-
rithm from this class. Ridor requires that the data is in@etally
supplied to the training set. Data items which con ict witrepi-
ously learned rules are seen as exceptions. These are dagedtr
by patching the rule locally for the particular item.

Another category, namely meta learning techniques [5] were
only roughly examined in preliminary tests and are not idell
in the nal results. These are techniques such as boostitmagr
ging that aim to create powerful classi ers through a corakion
of several simpler ones. Depending on the algorithm hierasg
cascades or ensembleshafseclassi ers are used for classi cation.
Since meta classi ers can be built from essentially arbjtc@mbi-
nations of simpler classi ers, they are inherently more ptioated
to evaluate and several choices of base classi ers would tabe
looked at. This will, however, be subject of future work.



4.1 Design & Method

To determine which classi er is suited best for the domainlagsi-
fying raw sensor data, a comprehensive, systematic ckxssvalu-
ation was performed. We examined a set of classi ers in Gdffit
settings, formed by a permutation of the values of two sibna
variables (see Tables 2 and 3), putting different genextdin de-
mands on the classi ers. One variable (objects) determivieether
the objects grasped in the test set were seen, i.e. graspksam
with this objects were used for training, versus unseen,revhe
grasp examples with this object were used during trainingteN
that even in the seen case, training and test sets alwaysdigere
joint. This means, a grasp example used during training wesm
used for testing as well. The other variable (user) detezthithe
user group, i.e. which set of users' grasp examples werentfae
training. For this variable, three different cases werestigated:
individual and group, where training data of only one user or the
full group of users, respectively, were used for trainind testing.
And a third caseunseenwhere data of all users except one was
used for training, and data of the left-out user was usecefstirtg.
The property of disjoint training and test sets also holds tn all
three cases.

[ Value | Meaning | Example Scenario |
seen | classier trained and tested applications with a
with the same set of objects given, xed set of

objects, e.g. atool set

unseen classi er trained and tested applications where

with different sets of ob-
jects

scene objects change ¢
are of modi able form,
e.g. CAD

=

Table 2: Investigated values of the variable 'objects'.

[ Value | Meaning | Example Scenario |

individual | classi er trained and testedl single operator sys
with a speci ¢ user tem

group classier trained with a| work group
group of users and tested
with a group member

unseen classi er trained with sev-| public installation,
eral users but tested with pe.g. game
user not in the group

Table 3: Investigated values of the variable 'user'.

For each of the six settings, several pairs of disjoint trejrand
test sets were generated by splitting the complete data adan
quate way. Each classi er was trained and tested with eagh pa
(or datasplit), and the average rate of correct classi cations for
each classi er over all these tests was determined. Therfedin-
put) vector for classi cation consisted of all 22 sensouea which
were not weighted. The output of the classi er was an inddue/a
indicating one of the six grasp types. Note, that since al ¢ams
were taken from valid examples of the different grasp typlesie
was no rejection class. The right answer was always one dfixhe
Schlesinger grasp types.

Classi er performance was measured in the percentage ef cor
rect classi cations. When two classi ers had the same ayera
performance, the classi er with the smaller standard demiawas
considered better. Additionally, for each setting, a sdieazt clas-
si ers was established by selecting all classi ers thafpened not
signi cantly different than the best classi er. To detemeithe sig-
ni cance of differences between classi ers the McNemag'sttwas
used (for an overview on signi cance tests, see [8]).

For all settings, the number of data splits into test anditngi
set and the respective set sizes per split are summarizeabla 7.
Also a rough indication of how the test set was formed is given
the middle column. More detail about the settings and thetexa
method of how test and training set were generated are givérei
following subsections. Readers not interested in thisl leVdetail
might want to skip to the presentation of results in secti@n 4

Setting Data Splitting Train. | Test
(user, objects) Set Set
#1 - individual, | 6 splits of data of one usef. 192 48
seen objects | test set - two random exam-

ples per object.
#2 - individual, | 8 splits (2 series of 4) of data 180 60
unseen objects of one user. test set - one ran-

dom object per grasp type.
#3 - group,| 6 splits - as in #1 but data of 1152 | 288
seen objects all users. test set - two ran-

dom examples per object and

user.
#4 - group, un-| 8 splits as in #2 but data of all 1080 | 360
seen objects users.
#5 - unseen,| 6 splits (one per user). testset 1200 | 240
seen objects - all data of one user.
#6 - unseen, 12 splits (2 series of 6). tegt 900 60
unseen objects set - from user splits (as in

#5) pick one random object

per grasp type.

Table 4: Splitting of data into test and training sets for the different
settings.

4.1.1 Individual user, seen objects

Data of only one user is regarded and the same set of objecteds
for testing and training. This corresponds to an applicatiehere
the system is trained for a speci ¢ user (and this user orhy) all
objects to be interacted with are known in advance. In coiapar
with conventional (calibrated) classi cation, this woutdrrespond
to a perfect glove calibration being available for a patiacuwser
and an additional training session having been performéubrev
all objects later to be interacted with are trained into ysem.

To generate disjoint training and test sets for this setafiglata
of one user was taken and split evenly into two sets, so tlat th
respective numbers of examples for each grasp and objgedsta
the same. Since ten data samples for each object were rdcerde
ve with a xed starting position and ve with a variable stdng
position —two samples of each object (one with each typesofist
position) were chosen for the test set (48 data items), wthide
others formed the training set (192 data items). Overallsplits
were generated in this way, by randomly chosing the testsitem

4.1.2 Individual user, unseen objects

Again, data of only one user is regarded, however tests vieeys
performed with unseen objects, i.e. no data examples oftifez
used for the tests have been used for training. This cornelspo
to an application, where the system was trained for a spemer,
however the objects used during the interaction are notiqusly
known.

Training and test sets were generated, by randomly choosiag
object for each grasp type and using the examples of thesetay
test set, whereas the data of the other objects was usedrasgra
set. This way, for each user a series of eight splits was geswrso
that each object of one grasp type was used exactly twicesting.
The training sets consisted of 180 data items, whereas $hedts
were 60 items large. The combinations between grasp types, i



which object of each grasp type was chosen, were random.slt wa
ensured, however, that each permutation only occurred once

4.1.3 Seen group of users, seen objects

Similar to 4.1.1 (individual user, seen objects), howesnadgxam-
ples of all users were used for training and testing. Thisssponds
to an application that is set up to work with a certain groupssrs
and the objects used for interaction are known in advancete No
that this setting, similar to the settings below, is alredgyond
the scope of calibration-based approaches as these resysiem
knowledge of individual users.

Data splitting was done as in the individual user case, bttt wi
data of all users instead of one. Additionally, it was madee su

that the same number of examples from each user was chosen. Fo

each object and user combination two examples were chosen fo
the test set (288 data items), while the remaining examplesed
the training set (1152 data items).

4.1.4 Seen group of users, unseen objects

This setting is similar to 4.1.2 (individual user, unseefjeots).
However, data of all users were used for training and testing
stead of data from just one user. This corresponds to ancapipin
that is set up to work with a certain group of users and thectbje
used for interaction are not known in advance.

Training and test sets were generated by creating eighsspli
where in each split data of one randomly picked object (pasgr
type) forms the test set (360 data items), whereas data frermret
maining objects composes the training set (1080 data itehgs)in,
it was made sure that no permutation was repeated and thrabbac
ject was part of the test sets exactly twice.

4.1.5 Unseen users, seen objects

In this setting, no data of the test user was contained inrtie-t
ing set, i.e. the classi er was not trained with data from thst
user. This corresponds to an application, where the systam w
trained with data from a group of users and another (prelyaus
seen user) then uses the system, for example in publiclatitals,
etc. All objects used during tests were seen before by thsica
(grasped by other users) during training, i.e. for this tgpappli-
cation the objects of the interaction need to be known in acka

Here, for each user, a pair of datasets was generated wleere th
training set contained sensor data from all users exceptaié
(1200 data items), and the test set consisted of all data fihisn
user (240 data items). Since data was acquired from sixreliffe
users, this resulted in six different disjoint splits.

4.1.6 Unseen users, unseen objects

In this setting neither the objects nor the user involvedesting
were seen by the classi er during training. This correspotaolap-
plications where the users and interaction objects aremmwk in
advance. This setting puts high demands on the classi ereg
alization capabilities, but can satisfy the broadest afes® cases.

For generating test sets and training sets the data wasplist s
into disjoint sets for each user as in 4.1.5. Then, for eadhase
user splits two random object splits were generated, witeresich
grasp type one object was picked. Data from this object was re
moved from the training sets, whereas only the data of thjscbb
remained in the test set. This resulted in twelve data spliesall
with a test set size of 60 data items and a training set siz®of 9
data items.

4.2 Results

For every evaluated classi er in each data split of eachragtthe
percentage of correctly classi ed examples has been détetn

Due to space limitations this is too much information to be-pr
sented here. Hence, the results have been summarized Iy dete
mining average classi cation rates for each setting andctiree-
sponding standard deviation, see Table 5. Each settingpig-re
sented by two columns (average and standard deviationjovi~ol
ing the cross validation results, in the next two columns thee
average performance over all settings and the standaratievi
of this total average. In the nal column, the average runetim
per test of each classi cation algorithm is given in milkieads.
This value is of course dependent on the used hardware and for
this reason is only to be seen as a relative comparison betwee
the several algorithms. Grey table cells indicate for eatting
the classi er with the highest accuracy; table cells shaideldght
gray indicate classi cation methods whose accuracies valy in-
signi cantly (according to a McNemar's test) from the besrp
forming classi er. The interested reader can nd the conples-
sults of the study as well as the captured data on the Web under
http://vr.tu-freiberg.de/grasping/ .

In the following, the results for each of the settings are miam
rized:

individual user, seen objects— With 9948% achieved by

the Kstar algorithm, a highly reliable classi cation ratanc

be reached for the case where the objects grasped are known
in advance and the user trained the system individually. A
not signi cantly worse performance can be reached with IB1,
RBF Network, Multilayer Perceptron, LMT, Simple Logistic,
NNge, and SMO. Since KStar has a relatively long runtime,
in more time critical applications IB1 would be the nexties
choice or, if an even shorter runtime is needed, Multilayer
Perceptron.

individual user, unseen objects— In the case, where the
objects grasped are not known (and trained in) in advance,
more generalization ability is needed, and the classiarati
rate drops down to 882%. The best classi cation rate was
achieved with SMO, which also has a relatively short runtime
Not signi cantly worse performed IB1 and Multilayer Percep
tron.

group of users, seen objects In the case, where a whole
group of users trained the system and an unspeci ed member
of the group uses it, a classi cation rate 0f:09%, almost as
good as for the single user case, can be achieved. Best per-
formed IB1, followed by KStar and Multilayer Perceptron,
which would be the best choice, if a short test runtime is im-
portant.

group of users, unseen objects Again, for unseen objects
the classi cation rate drops, in this case ta@®%. The best
classi er in this setting clearly was IB1 with all other cts
ers performing signi cantly worse.

unseen users, seen objectsFor the case, where the user is
unseen to the system but the objects are known in advance,
a similar classi cation rate as for the unseen objects cases
achieved. With 874% SMO performed best, followed by the
not signi cantly worse Multilayer Perceptron, IB1, Random
Forest and LMT classi ers.

unseen users, unseen objectsIn this case, where the user
as well as the objects are unseen, the classi cation ratesdro
further down to 7367%, achieved by the SMO classi er. This
re ects the rather high demand on generalization abilities
the classi ers. Similar performance was achieved by Mul-
tilayer Perceptron, IB1, Simple Logistic and RBF Network
classi ers.
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To obtain an additional measure for classi er performarc&0-
fold cross-validation on the complete data set was perfdrni®
cross-validate a data set, it is split in k (where k is 10 iis tase)
subsets. Then, k tests are conducted where the k-th subsstds
as the test set for the classi er and the other k-1 subsetssa@ as
the training data. The total classi cation rate is then caied as
the average of the classi cation rates of all k tests.

In the column labeled “Total”, the average value of the agera
performances in the different settings is denoted. Thisimdica-
tion of how well a classi er performs overall, hence the &@blas
been sorted by this value. The IB1 algorithm leads the talile w
87:61% classi cation rate. The total standard deviation iatks
how strongly classi er performance varies over the differset-
tings. Note, that this is not the average of the standardatienis
for the various settings. The average performances of ttechses-
si ers for each setting are also displayed comparativelyigure 3.

100%——= ——

80%)

60%

ind. User, ind. User, User groupUser groupunseen Usarmseen User,
seen Obj. unseen Objseen Obj. unseen Obgeen Obj. unseen Obj.

Figure 3: Comparison of average performance of best classi ers for
each setting

Average classi er runtimes (per test) have been determimed
summarizing the runtimes for all tests and dividing them hy t
number of tests. They are given in the last column. As can ée,se
most runtimes stay in the same order of magnitude. The omlgEex
tions are the lazy evaluators, which have a relatively langime,
since a lot of training examples need to be considered duhiag
tests. This runtime difference will also further increasgharger
training set sizes.

For further analysis, the confusion matrix of all classtica
results for the best classi er IB1 was investigated. Eactryeim
this matrix shows the number of recognized categories whet-a
tain grasp is shown to the classi er. For a better understendf
the matrix, these numbers were normalized by dividing bytobed
number of examples for a certain grasp type. The resultimfuco
sion matrix is presented in Table 6.

The entries in the diagonal of the matrix represent the perce
age of which grasps were identi ed correctly. Since, as heenb
shown, the IB1 classi er performs quite well, these valuesraa-
sonably high. The other values in the matrix describe thequer
age of misclassi cations between the shown and classi easpr
category. They indicate probable dif culties when distinghing
between certain grasps. As predicted by the Sammon's mgyapin
Section 3.3 the distinction between cylindrical and hooksgs as

| | tip | cyl | sph | pal | hook | lat |
tip 0.9698| 0.0030| 0.0006| 0.0214| 0.0038| 0.0015
cyl 0.0077| 0.9329| 0.0106| 0.0086| 0.0375| 0.0028
sph || 0.0042| 0.0032| 0.9890| 0.0033| 0.0000( 0.0002
pal || 0.0205| 0.0024| 0.0006| 0.9765| 0.0000( 0.0001
hook || 0.0012| 0.0176| 0.0004| 0.0000| 0.9732| 0.0076
lat 0.0011| 0.0002| 0.0000| 0.0002| 0.0028| 0.9957

Table 6: The normalized overall confusion matrix for IB1. (Row =
shown example, Column = classi ed as; column names are abbre vi-
ations of tip, cylindrical, spherical, palmar, hook, lateral)

well as between tip and palmar grasps is problematic. Inrasit
spherical and lateral are very well distinguishable frohtred other

grasp types.

4.3 Discussion

It has been shown that grasp recognition based on unca&ibdatta
glove sensor input can be performed in a very reliable waypet s
ci ¢ scenarios, where the group of users that uses the syateithe
objects that are used during interaction are known in adxaBach
user would then need to train the system, by performing grésp
each object occurring in the scenario.

For cases were either potential users are unknown or thpegtas
objects are not determined in advance, with a recognitite o&
about 80%, still an acceptable performance can be achievexpt
plications where occasional misclassi cations are ndiaal. This
might be the case for example public gaming or other entertant
installations.

From the average performance of the examined classi ersta li
of classi cation algorithms that are suited best for the raiged
problem domain has been compiled. Statistical signi catests
suggest that these algorithms perform signi cantly beti@n the
others in all examined settings. Furthermore, it can be fe&n
several classi er categories are suited better for thibjenm do-
main than others. For example, whereas most function approx
mators perform reasonably well, Bayesian classi ers incakes
yielded unsatisfactory results. Similarly, most tree (vitie excep-
tion of LMT and Random Forest) and rule-based classi ergh{wi
the exception of NNge) resulted in comparably low recogniti
rates when applied to the full problem of distinguishingwiestn
all six Schlesinger grasps.

The overall best performing classi er IB1, as indicated bg t
confusion matrix in Table 6, is most prone to misclassi oas be-
tween grasps of types palmar and tip, and resp., cylindeoal
hook. To a certain extent, these misclassi cations can tribated
to an inherently hard separability of these grasp typesthaiséand
shape only (cf. Sammon's Mapping in Section 3.3). Howewer, a
examination of the confusion matrices of all classi erseals that
certain classi ers clearly outperform IB1 and the otherssieers
when applied to the specic problem of distinguishing betnwe
these hard cases only: For differentiating between tip aichar
grasps, the REPTree and the rule-based ZeroR classi efededig-
ni cantly better recognition rates than all other classse The best
separation of palmar and tip graps was achieved by the BatesN
classi er. These observations suggest that a clever caatibim of
classi ers could lead to even higher recognitions rates.

A possibly surprising result was that, while LWL (Local
Weighted Learning) did not perform well, the other lazy eweal
tion algorithms were shown to be the best choice of classiiar
the domain “grasp recognition from raw data glove sensa’dat



5 CONCLUSION [2]

We introduced a systematic approach for the evaluationasfsél 3
cation techniques for recognizing grasps performed witdeda 3]
glove. In particular, we distinguish between 6 settings thake
different assumptions about the user groups and objectseto b 4]
grasped. A large number of classi ers was compared to draw in
formed conclusions about achievable recognitions ratéiserdif-

ferent settings. Through this, our approach extends pusvieports 5]
on classi er performance that focused on particular classiand
settings.

An interesting result of our evaluation is that calibratiose [6]
classi cation of grasps can be performed with reasonablkigh
reliability for a number of different settings. Surprisingalgo-
rithms based on lazy learning outperform most of other dlgms [7]
in this domain. With respect to the average classi catice @ver
all settings, the IB1 (instance based learner) outperfdratieother
tested algorithms. This is a suprising result, as lazy Earo [8l
not perform any processing of the collected data, which ssggly
results in lower generalization ability. Considering tlog/ Icom-
plexity of implementation, these algorithms seem to be waiied (el
for many VR applications. However, in applications withrexhe
realtime demands, e.g. requiring over 1000 classi catipeissec- (10]
ond, faster techniques such as the Multilayer Perceptreteiter
suited. While the total average classi cation rate of MLRisour [11]
experiments was only less than 1% worse than that of IB1,dt ha
an approximately 35 times shorter runtime.

As indicated by the data analysis in section 3.3, the grasiheo
Schlesinger taxonomy are hard to distinguish based on Heaypks [12]
alone, e.g. palmar and tip. This makes classi cation basathcal-
ibrated sensor data — and, presumably, similarly for jongies val- [13]
ues — a challenging task. For our study, this had the adveurtteg
differences between the various classi ers turned out netearly
in the analysis. To achieve better recognition rates, thkigion
of higher level features such as nger bending indexes ottamin
points will be considered in future work. Other taxonomieshw [14]
clearer differences between classes in terms of hand poiggsg m
also increase recognition rates.

As our results for evaluating the confusion matrices of sitas
ers show (see section 4.3), some classi ers perform beitetis-
tinguishing speci ¢ grasp types than others. The strengthene [16]
classi er could compensate the weaknesses of anotherasthikir
combination into a well-tuned meta classi er might lead tpaav- [17]
erful hybrid classi cation scheme. In future work an in-deeval-
uation of various hybrid and meta-classi ers will be perfad, [18]
which might result in a classi er that distinguishes welltlween
all grasp categories, even the ones which are more dif cuttep-
arate. A combination of IB1 (the best overall classi er) kviither
the ZeroR rules or the REPTree tree classi er and additlpriae [19]
BayesNet classi er would be a rst recommendation. Additio
ally a thorough parameter optimization process of the agiase
classi ers might yield even higher recognition rates thiae bnes
presented here. [20]

Concluding, we believe that the demonstrated approach of
calibration-free data glove operation combined with dfuth@-box
application of classi ers from a freely available data nmigisoft-
ware package greatly simpli es the usage of data gloves.

[15]

[21]
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