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ABSTRACT

This paper presents a comparison of various classi�cation meth-
ods for the problem of recognizing grasp types involved in object
manipulations performed with a data glove. Conventional wisdom
holds that data gloves need calibration in order to obtain accurate
results. However, calibration is a time-consuming process, inher-
ently user-speci�c, and its results are often not perfect. In contrast,
the present study aims at evaluating recognition methods that do
not require prior calibration of the data glove, by using rawsen-
sor readings as input features and mapping them directly to dif-
ferent categories of hand shapes. An experiment was carriedout,
where test persons wearing a data glove had to grasp physicalob-
jects of different shapes corresponding to the various grasp types of
the Schlesinger taxonomy. The collected data was analyzed with
28 classi�ers including different types of neural networks, decision
trees, Bayes nets, and lazy learners. Each classi�er was analyzed
in six different settings, representing various application scenarios
with differing generalization demands. The results of thiswork
are twofold: (1) We show that a reasonably well to highly reliable
recognition of grasp types can be achieved – depending on whether
or not the glove user is among those training the classi�er – even
with uncalibrated data gloves. (2) We identify the best perform-
ing classi�cation methods for recognition of various grasptypes.
To conclude, cumbersome calibration processes before productive
usage of data gloves can be spared in many situations.

Keywords: Data Glove, Calibration, Grasp Recognition, Classi�-
cation Methods

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—[Virtual Reality]

1 INTRODUCTION

A desirable goal for many applications of immersive VR is thesup-
port of natural virtual object manipulations that closely resemble
the manipulation of real objects. Natural object manipulations are
e.g. fundamental in virtual prototyping for accurate simulation of
the operation or assembly of virtual product models [24]. Simi-
larly, the imitation of a VR user's manipulation of virtual objects
has been proposed as a means for programming assembly robotsby
demonstration [1] and for generating virtual character animations
that faithfully reproduce the user's interactions with scene objects
[13]. To support such natural manipulations, it is crucial that the
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VR system is able to differentiate between various types of human
grasping.

VR-based manipulations of virtual objects are commonly facil-
itated through data glove-type input devices, such as Immersion's
Cyberglove. In order to recognize a user-performed grasp, the sen-
sor readings of the data glove have to be processed, analyzedand
matched towards one of a set of known grasp types. Typically,be-
fore using the data gloves a time-consuming calibration phase is
needed in order to account for differences in hand size and propor-
tion when mapping from raw sensor readings to joint angles ofthe
user's hand. How an optimal calibration can be achieved is still
an unsettled question. The more accurate methods rely on external
vision systems, which themselves need to be calibrated.

A main motivation for the work described here is to �nd out
whether it is possible to recognize a range of hand shape types dur-
ing manipulations directly from raw sensor input without the inter-
mediate joint angle representations. If successful, the cumbersome
calibration phase could be spared, enabling an immediate produc-
tive use of data gloves in immersive VR systems in many situations
where reliable classi�cation of hand shapes (rather than exact re-
construction of joint angle values) is suf�cient for the application.

A second motivation for this work is to evaluate the performance
of different classi�cation methods. The aim is to identify the clas-
si�er (or family of classi�ers) which is suited best for the problem
domain of “grasp recognition from raw data glove sensor data”.
The reason behind this are the so-called “no free lunch” (NFL) the-
orems [23]. The NFL theorems state, that averaged over all possible
problems, all algorithms perform exactly equal. As a consequence,
there can not be one classi�cation technique, which is optimal for
all classi�cation tasks. However, when restricting the classi�ca-
tion problem to a particular domain, there might well be a classi�er
(or a set of classi�ers) which outperforms all others. This leads to
the conclusion that selecting a good classi�er should be based on
an empirical evaluation in the respective problem domain. Follow-
ing this reasoning we systematically evaluated several classi�cation
techniques for this problem domain. We have experimented with a
total of 28 classi�ers in various settings to �nd out which classi-
�ers are suited best for this type of problem. The settings re�ect
different possible use-cases and application scenarios. In this way,
informed decisions can be made about whether or not to use a par-
ticular classi�er in a given VR scenario.

2 RELATED WORK

Various research in the �elds of medicine, robotics, developmen-
tal psychology and VR has led to the formulation of grasp tax-
onomies: categorizations of grasps based on form or function. An
early taxonomy is described in Schlesinger's work on construct-
ing arti�cial hands [20]. He characterized which functionalities in
prosthetic hands are needed to grasp certain objects. Building on
this work, Taylor and Schwartz [21] de�ned English names forthe
most important grasps investigated by Schlesinger: cylindrical, tip,
hook, palmar, spherical and lateral grip (see Figure 1 for examples).



Napier [16] researched the basic task requirements of grasps and
differentiated between two basic grasp types: the power grip which
clamps an object �rmly under usage of the palm and the precision
grip where the thumb and other �ngers pinch the object. Later,
Cutkosky [7] investigated optimal grasp operations in factories and
developed a taxonomy for categorizing feasible grasp typesin this
domain.

In order to enable the computer to recognize and match a user-
performed grasp onto a corresponding class from the taxonomy,
techniques from the area of pattern classi�cation can be applied. In
Friedrich et al. [11] a Neural Network classi�er and the Cutkosky
taxonomy were used for this purpose, yielding a classi�cation rate
of about 90% for grasps performed using a data glove. According
to Ekvall and Kragic [9], a Hidden Markov Model (HMM) based
method was even able to achieve recognition rates of close to100%
for single user settings. However, recognition rates dropped sig-
ni�cantly (to about 70%) for settings with multiple users. In Ale-
otti and Caselli [1] a nearest neighbor classi�er is used in conjunc-
tion with heuristic rules. The task of these rules is to disambiguate
between similar grasps. In this way, recognition rates of 94% for
seen users (users trained with) and 82% for unseen users (users not
trained with) were achieved. Applying a classi�er to unseenusers
always bears the risk of signi�cantly lower recognition rates. This
stems from the fact that even identical postures can producediffer-
ent sensor values when the sizes of the subjects' hands vary.One
way to tackle this problem is to perform a calibration process as in
Kahlesz et al. [14]. However, this process can be complex, time-
consuming and in itself error-prone. In a recent paper by Borst
and Indugula on realistic virtual grasping [4], it was noticed that
even time-consuming calibration procedures do not produceaccu-
rate results. Another way to solve this problem is to use classi�-
cation algorithms which are able to generalize over a large set of
users. However, it is still an open question which classi�cation
techniques can achieve such generalization as no thorough compar-
ison has been conducted so far. Another interesting question which
needs further investigation is the performance of classi�cation tech-
niques in different settings; e.g when new objects are grasped.

In contrast to previous research, the work presented in thispaper
does not focus on a particular classi�cation algorithm or a particular
setting. Instead, we try to compare the performance of a widerange
of classi�ers in several settings within the domain of graspclassi�-
cation. Such a comprehensive evaluation enables us to draw various
conclusions about the applicability and the success of classi�cation
with uncalibrated data gloves.

3 DATA ACQUISITION

In the data acquisition phase of our study, sensor value datawas
captured from a couple of users, performing all the grasps of
Schlesinger's taxonomy [20] on several real objects. Afterrecord-
ing the raw data, a �rst analysis was done on the basis of Sammons
mapping of a Self-Organizing Map [15]. The experiment setupand
the results of the data analysis are presented after a short illustration
of how the hand posture is measured by the type of data glove used.

3.1 Data Glove

The data glove used for recording was a 22-sensor wireless Cyber-
glove 2 by Immersion, Inc. (see Figure 1). This type of data glove
measures hand posture through a number of resistive bend-sensing
sensors which are placed in key locations (mostly joint positions)
on a stretch fabric glove. Each of the sensors measures its amount
of bending around one axis (the �at side) in the form of an 8-bit
value between 0 and 255, which is almost linearly proportional to
the bend angle.

It is important to note that the measured sensor valuesdo not
directly represent �nger joint angle values. For the mapping from

sensor values to actual joint angles, a complex calibrationand con-
version process is necessary which involves several pitfalls. In the
easiest case of measuring the �exion of the interphalangealjoints,
a direct linear conversion from one sensor value to a joint angle can
be performed. This involves an offset value (sensor value when the
joint is considered straight) and a gain factor (multiplicative factor
to convert bend value to radians/degrees). Even for this simplest
method of mapping, offset and gain values have to be determined
for each single sensor in a tedious process. Due to cross-couplings
between the sensors, however, more complex forms of calibration
are necessary to achieve a satisfactory �delity. In Kahleszet al. [14]
some recent calibration techniques are summarized. Since our ob-
jective was to spare any calibration process, the raw sensorread-
ings, as transmitted by the Cyberglove 2, were used directlyas fea-
ture vector for hand posture classi�cation.

3.2 Experiment Setup

For each of the six grasp types, four objects of various shapes were
grasped. Table 1 lists the objects used for each grasp type, Figure 1
shows pictures of some of these objects.

Grasp Type Objects
Cylindrical Bottle, Hammer, Flower Pot, Coffee Jug
Hook Plastic Case, Toolbox, Backpack, Bag
Lateral Floppy Disk, Key, ID Card, CD Cover
Palmar Small Box, Matchbox, Tape Roller, PDA
Spherical Tennis Ball, Egg-shaped Case, Bowl, Mouse
Tip Nail, Pencil, Small Eraser, PDA

Table 1: The grasp types and corresponding trial objects.

For each object, two trial sequences were performed. In the
�rst sequence, the object was grasped �ve times, with the subject's
grasping hand starting from a �xed position on the table. During
this whole sequence the subject sat at the table. In the second se-
quence, the object was again grasped �ve times. This time, how-
ever, the hand starting position was varied randomly, as wasthe ob-
ject's orientation on the table. For larger objects, like the tool box,
the subject was standing during this sequence. The captureddata
consisted of all the 22 glove sensor values representing thehand
posture at the “peak” moment of the grasp – as opposed to a se-
quence of sensor values of a full grasping movement. This moment
means the time the test subject's hand �rmly held the object and the
�ngers were at rest. The peak moment was determined manually
by the test subject by pressing a button on the dataglove.

The whole data acquisition process was conducted with six test
subjects. Each subject was adult, male and right-handed. Intotal,
6 (test subjects)� 24 (objects)� 10 (grasps per test subject and
object) = 1440 data items were collected.

3.3 Data Visualization

Before the classi�er evaluation was executed, it proved interesting
to �rst take a “glimpse” at the data. This helped to get an ideaof
the problem dif�culty, to assess the quality of the recordeddata or
to make �rst decisions concerning a suitable classi�er. Typically,
the recorded data is in a higher-dimensional space which makes a
human inspection dif�cult. For inspection and analysis purposes
it is more convenient to create a visual representation of the ex-
periment data. This can be achieved through a projection of the
high-dimensional pattern space onto two dimensions. Common
techniques for such projection tasks are the Self-Organizing Map
and Sammons' mapping [15]. Figure 2 shows a projection of our
experiment data using a combination of the two techniques. The
projection is distance preserving, which means that pointswhich
are near to each other in the higher dimensional space will also be



Cylindrical Hook Lateral Palmar Spherical Tip

Figure 1: Images of some of the objects used during the grasping experiments with their corresponding grasp types.
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Figure 2: Sammons mapping of a Self-Organizing Map representing
the data projected onto a two-dimensional space.

near to each other in the projection. It can be seen that the spher-
ical grasp forms a particular region in the upper part of the map.
This region can neatly be separated from regions representing other
grasps, which indicates that classi�cation of this grasp type is par-
ticularly easy. Although other grasp types also occupy particular
regions on the map, they are much more intermixed. This yields
complex decision boundaries. For example, the classes “tip” and
“palmar” cannot cleanly be separated from each other. What also
becomes visible, is that “cylindrical” grasps are scattered through-
out the map. This fact is particularly interesting, as it exempli�es
the hard separability of the Schlesinger grasps based on hand shape
only. It follows from this observation that we can expect classi�ca-
tion to be more error-prone for cylindrical grasps.

4 CLASSIFIER EVALUATION

A set of 28 different classi�ers from the freely available Weka data
mining software package [22] has been evaluated. These wererun
in an “out of the box” fashion, i.e. with default settings andwithout
any parameter optimization. The tested classi�ers can be broadly
divided into �ve categories – probabilistic methods, function ap-
proximators, lazy learners, trees, and rule sets: (1) Probabilistic

methods such as the naive Bayes classi�er [10] or Bayes nets [6]
learn to discriminate between classes by building up probability
models of each class. Using Bayesian inference the probability of a
new data item belonging to a particular class can be computed. For
example, the naive Bayes classi�er learns a model of the training
data by estimating class probabilities and conditional probabilities
of the variables. Together with the Bayes theorem, these values
can be used to compute the probability of a data item belonging to
a particular class. The only “naive” assumption (hence the name)
that is being made, is that all variables of a data item are mutually
independent. (2) Function approximators learn the parameters of a
function which takes the new data item as an input and returnsthe
class as an output. Well-known representatives of this typeof al-
gorithm are Multilayer Perceptrons and Radial Basis Networks [2].
Here, the approximated function is represented by a set of intercon-
nected neurons. The back-propagation algorithm [12] can beused
to train such networks in order to minimize the squared errorof ap-
proximation. (3) Lazy learning techniques [3] postpone anytype
of learning until a request for classi�cation of a new data item is
received. When such a request is received, a database of previously
seen examples is searched for a set of examples, which are closest
to the new item (w.r.t. a given distance metrics). (4) Tree classi-
�ers, such as decision trees [17], try to break up the classi�cation
task into a hierarchy of simple decisions at whose end the �nal de-
cision determines the class. As the name suggests, this hierarchy
has the form of a tree, whose nodes represent local decisions, while
leafs represent the classes. (5) Finally, rule induction methods [18]
create sets of logical rules for determining the class of a particular
item. Ridor [19], or “Ripple Down Rule”, is a representativealgo-
rithm from this class. Ridor requires that the data is incrementally
supplied to the training set. Data items which con�ict with previ-
ously learned rules are seen as exceptions. These are then treated
by patching the rule locally for the particular item.

Another category, namely meta learning techniques [5] were
only roughly examined in preliminary tests and are not included
in the �nal results. These are techniques such as boosting orbag-
ging that aim to create powerful classi�ers through a combination
of several simpler ones. Depending on the algorithm hierarchies,
cascades or ensembles ofbaseclassi�ers are used for classi�cation.
Since meta classi�ers can be built from essentially arbitrary combi-
nations of simpler classi�ers, they are inherently more complicated
to evaluate and several choices of base classi�ers would have to be
looked at. This will, however, be subject of future work.



4.1 Design & Method

To determine which classi�er is suited best for the domain ofclassi-
fying raw sensor data, a comprehensive, systematic classi�er evalu-
ation was performed. We examined a set of classi�ers in 6 different
settings, formed by a permutation of the values of two situational
variables (see Tables 2 and 3), putting different generalization de-
mands on the classi�ers. One variable (objects) determinedwhether
the objects grasped in the test set were seen, i.e. grasp examples
with this objects were used for training, versus unseen, where no
grasp examples with this object were used during training. Note,
that even in the seen case, training and test sets always weredis-
joint. This means, a grasp example used during training was never
used for testing as well. The other variable (user) determined the
user group, i.e. which set of users' grasp examples were taken for
training. For this variable, three different cases were investigated:
individual andgroup, where training data of only one user or the
full group of users, respectively, were used for training and testing.
And a third case,unseen, where data of all users except one was
used for training, and data of the left-out user was used for testing.
The property of disjoint training and test sets also holds true in all
three cases.

Value Meaning Example Scenario
seen classi�er trained and tested

with the same set of objects
applications with a
given, �xed set of
objects, e.g. a tool set

unseen classi�er trained and tested
with different sets of ob-
jects

applications where
scene objects change or
are of modi�able form,
e.g. CAD

Table 2: Investigated values of the variable 'objects'.

Value Meaning Example Scenario
individual classi�er trained and tested

with a speci�c user
single operator sys-
tem

group classi�er trained with a
group of users and tested
with a group member

work group

unseen classi�er trained with sev-
eral users but tested with a
user not in the group

public installation,
e.g. game

Table 3: Investigated values of the variable 'user'.

For each of the six settings, several pairs of disjoint training and
test sets were generated by splitting the complete data in anade-
quate way. Each classi�er was trained and tested with each pair
(or datasplit), and the average rate of correct classi�cations for
each classi�er over all these tests was determined. The feature (in-
put) vector for classi�cation consisted of all 22 sensor values which
were not weighted. The output of the classi�er was an index value,
indicating one of the six grasp types. Note, that since all data items
were taken from valid examples of the different grasp types,there
was no rejection class. The right answer was always one of thesix
Schlesinger grasp types.

Classi�er performance was measured in the percentage of cor-
rect classi�cations. When two classi�ers had the same average
performance, the classi�er with the smaller standard deviation was
considered better. Additionally, for each setting, a set ofbest clas-
si�ers was established by selecting all classi�ers that performed not
signi�cantly different than the best classi�er. To determine the sig-
ni�cance of differences between classi�ers the McNemar's test was
used (for an overview on signi�cance tests, see [8]).

For all settings, the number of data splits into test and training
set and the respective set sizes per split are summarized in Table 4.
Also a rough indication of how the test set was formed is givenin
the middle column. More detail about the settings and the exact
method of how test and training set were generated are given in the
following subsections. Readers not interested in this level of detail
might want to skip to the presentation of results in section 4.2.

Setting Data Splitting Train. Test
(user, objects) Set Set
#1 - individual,
seen objects

6 splits of data of one user.
test set - two random exam-
ples per object.

192 48

#2 - individual,
unseen objects

8 splits (2 series of 4) of data
of one user. test set - one ran-
dom object per grasp type.

180 60

#3 - group,
seen objects

6 splits - as in #1 but data of
all users. test set - two ran-
dom examples per object and
user.

1152 288

#4 - group, un-
seen objects

8 splits as in #2 but data of all
users.

1080 360

#5 - unseen,
seen objects

6 splits (one per user). test set
- all data of one user.

1200 240

#6 - unseen,
unseen objects

12 splits (2 series of 6). test
set - from user splits (as in
#5) pick one random object
per grasp type.

900 60

Table 4: Splitting of data into test and training sets for the different
settings.

4.1.1 Individual user, seen objects

Data of only one user is regarded and the same set of objects isused
for testing and training. This corresponds to an application, where
the system is trained for a speci�c user (and this user only) and all
objects to be interacted with are known in advance. In comparison
with conventional (calibrated) classi�cation, this wouldcorrespond
to a perfect glove calibration being available for a particular user
and an additional training session having been performed, where
all objects later to be interacted with are trained into the system.

To generate disjoint training and test sets for this setting, all data
of one user was taken and split evenly into two sets, so that the
respective numbers of examples for each grasp and object stayed
the same. Since ten data samples for each object were recorded –
�ve with a �xed starting position and �ve with a variable starting
position – two samples of each object (one with each type of starting
position) were chosen for the test set (48 data items), whilethe
others formed the training set (192 data items). Overall, six splits
were generated in this way, by randomly chosing the test items.

4.1.2 Individual user, unseen objects

Again, data of only one user is regarded, however tests were always
performed with unseen objects, i.e. no data examples of the object
used for the tests have been used for training. This corresponds
to an application, where the system was trained for a speci�cuser,
however the objects used during the interaction are not previously
known.

Training and test sets were generated, by randomly choosingone
object for each grasp type and using the examples of these object as
test set, whereas the data of the other objects was used as training
set. This way, for each user a series of eight splits was generated, so
that each object of one grasp type was used exactly twice for testing.
The training sets consisted of 180 data items, whereas the test sets
were 60 items large. The combinations between grasp types, i.e.



which object of each grasp type was chosen, were random. It was
ensured, however, that each permutation only occurred once.

4.1.3 Seen group of users, seen objects

Similar to 4.1.1 (individual user, seen objects), however data exam-
ples of all users were used for training and testing. This corresponds
to an application that is set up to work with a certain group ofusers
and the objects used for interaction are known in advance. Note
that this setting, similar to the settings below, is alreadybeyond
the scope of calibration-based approaches as these requiresystem
knowledge of individual users.

Data splitting was done as in the individual user case, but with
data of all users instead of one. Additionally, it was made sure
that the same number of examples from each user was chosen. For
each object and user combination two examples were chosen for
the test set (288 data items), while the remaining examples formed
the training set (1152 data items).

4.1.4 Seen group of users, unseen objects

This setting is similar to 4.1.2 (individual user, unseen objects).
However, data of all users were used for training and testingin-
stead of data from just one user. This corresponds to an application
that is set up to work with a certain group of users and the objects
used for interaction are not known in advance.

Training and test sets were generated by creating eight splits,
where in each split data of one randomly picked object (per grasp
type) forms the test set (360 data items), whereas data from the re-
maining objects composes the training set (1080 data items). Again,
it was made sure that no permutation was repeated and that each ob-
ject was part of the test sets exactly twice.

4.1.5 Unseen users, seen objects

In this setting, no data of the test user was contained in the train-
ing set, i.e. the classi�er was not trained with data from thetest
user. This corresponds to an application, where the system was
trained with data from a group of users and another (previously un-
seen user) then uses the system, for example in public installations,
etc. All objects used during tests were seen before by the classi�er
(grasped by other users) during training, i.e. for this typeof appli-
cation the objects of the interaction need to be known in advance.

Here, for each user, a pair of datasets was generated where the
training set contained sensor data from all users except this one
(1200 data items), and the test set consisted of all data fromthis
user (240 data items). Since data was acquired from six different
users, this resulted in six different disjoint splits.

4.1.6 Unseen users, unseen objects

In this setting neither the objects nor the user involved in testing
were seen by the classi�er during training. This corresponds to ap-
plications where the users and interaction objects are not known in
advance. This setting puts high demands on the classi�er's gener-
alization capabilities, but can satisfy the broadest area of use cases.

For generating test sets and training sets the data was �rst split
into disjoint sets for each user as in 4.1.5. Then, for each ofthese
user splits two random object splits were generated, where for each
grasp type one object was picked. Data from this object was re-
moved from the training sets, whereas only the data of this object
remained in the test set. This resulted in twelve data splitsoverall
with a test set size of 60 data items and a training set size of 900
data items.

4.2 Results

For every evaluated classi�er in each data split of each setting, the
percentage of correctly classi�ed examples has been determined.

Due to space limitations this is too much information to be pre-
sented here. Hence, the results have been summarized by deter-
mining average classi�cation rates for each setting and thecorre-
sponding standard deviation, see Table 5. Each setting is repre-
sented by two columns (average and standard deviation). Follow-
ing the cross validation results, in the next two columns arethe
average performance over all settings and the standard deviation
of this total average. In the �nal column, the average run time
per test of each classi�cation algorithm is given in milliseconds.
This value is of course dependent on the used hardware and for
this reason is only to be seen as a relative comparison between
the several algorithms. Grey table cells indicate for each setting
the classi�er with the highest accuracy; table cells shadedin light
gray indicate classi�cation methods whose accuracies varyonly in-
signi�cantly (according to a McNemar's test) from the best per-
forming classi�er. The interested reader can �nd the complete re-
sults of the study as well as the captured data on the Web under
http://vr.tu-freiberg.de/grasping/ .

In the following, the results for each of the settings are summa-
rized:

� individual user, seen objects– With 99:48% achieved by
the Kstar algorithm, a highly reliable classi�cation rate can
be reached for the case where the objects grasped are known
in advance and the user trained the system individually. A
not signi�cantly worse performance can be reached with IB1,
RBF Network, Multilayer Perceptron, LMT, Simple Logistic,
NNge, and SMO. Since KStar has a relatively long runtime,
in more time critical applications IB1 would be the next-best
choice or, if an even shorter runtime is needed, Multilayer
Perceptron.

� individual user, unseen objects– In the case, where the
objects grasped are not known (and trained in) in advance,
more generalization ability is needed, and the classi�cation
rate drops down to 83:82%. The best classi�cation rate was
achieved with SMO, which also has a relatively short runtime.
Not signi�cantly worse performed IB1 and Multilayer Percep-
tron.

� group of users, seen objects– In the case, where a whole
group of users trained the system and an unspeci�ed member
of the group uses it, a classi�cation rate of 99:07%, almost as
good as for the single user case, can be achieved. Best per-
formed IB1, followed by KStar and Multilayer Perceptron,
which would be the best choice, if a short test runtime is im-
portant.

� group of users, unseen objects– Again, for unseen objects
the classi�cation rate drops, in this case to 84:62%. The best
classi�er in this setting clearly was IB1 with all other classi-
�ers performing signi�cantly worse.

� unseen users, seen objects– For the case, where the user is
unseen to the system but the objects are known in advance,
a similar classi�cation rate as for the unseen objects casesis
achieved. With 81:74% SMO performed best, followed by the
not signi�cantly worse Multilayer Perceptron, IB1, Random
Forest and LMT classi�ers.

� unseen users, unseen objects– In this case, where the user
as well as the objects are unseen, the classi�cation rate drops
further down to 71:67%, achieved by the SMO classi�er. This
re�ects the rather high demand on generalization abilitiesof
the classi�ers. Similar performance was achieved by Mul-
tilayer Perceptron, IB1, Simple Logistic and RBF Network
classi�ers.
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To obtain an additional measure for classi�er performance,a 10-
fold cross-validation on the complete data set was performed. To
cross-validate a data set, it is split in k (where k is 10 in this case)
subsets. Then, k tests are conducted where the k-th subset isused
as the test set for the classi�er and the other k-1 subsets areused as
the training data. The total classi�cation rate is then computed as
the average of the classi�cation rates of all k tests.

In the column labeled “Total”, the average value of the average
performances in the different settings is denoted. This is an indica-
tion of how well a classi�er performs overall, hence the table has
been sorted by this value. The IB1 algorithm leads the table with
87:61% classi�cation rate. The total standard deviation indicates
how strongly classi�er performance varies over the different set-
tings. Note, that this is not the average of the standard deviations
for the various settings. The average performances of the best clas-
si�ers for each setting are also displayed comparatively inFigure 3.

ind. User,
seen Obj.

ind. User,
unseen Obj.

User group,
seen Obj.

User group,
unseen Obj.

unseen User,
seen Obj.

unseen User,
unseen Obj.

60%

80%

100%

Figure 3: Comparison of average performance of best classi� ers for
each setting

Average classi�er runtimes (per test) have been determinedby
summarizing the runtimes for all tests and dividing them by the
number of tests. They are given in the last column. As can be seen,
most runtimes stay in the same order of magnitude. The only excep-
tions are the lazy evaluators, which have a relatively long runtime,
since a lot of training examples need to be considered duringthe
tests. This runtime difference will also further increase with larger
training set sizes.

For further analysis, the confusion matrix of all classi�cation
results for the best classi�er IB1 was investigated. Each entry in
this matrix shows the number of recognized categories when acer-
tain grasp is shown to the classi�er. For a better understanding of
the matrix, these numbers were normalized by dividing by thetotal
number of examples for a certain grasp type. The resulting confu-
sion matrix is presented in Table 6.

The entries in the diagonal of the matrix represent the percent-
age of which grasps were identi�ed correctly. Since, as has been
shown, the IB1 classi�er performs quite well, these values are rea-
sonably high. The other values in the matrix describe the percent-
age of misclassi�cations between the shown and classi�ed grasp
category. They indicate probable dif�culties when distinguishing
between certain grasps. As predicted by the Sammon's mapping in
Section 3.3 the distinction between cylindrical and hook grasps as

tip cyl sph pal hook lat

tip 0.9698 0.0030 0.0006 0.0214 0.0038 0.0015
cyl 0.0077 0.9329 0.0106 0.0086 0.0375 0.0028
sph 0.0042 0.0032 0.9890 0.0033 0.0000 0.0002
pal 0.0205 0.0024 0.0006 0.9765 0.0000 0.0001

hook 0.0012 0.0176 0.0004 0.0000 0.9732 0.0076
lat 0.0011 0.0002 0.0000 0.0002 0.0028 0.9957

Table 6: The normalized overall confusion matrix for IB1. (Row =
shown example, Column = classi�ed as; column names are abbre vi-
ations of tip, cylindrical, spherical, palmar, hook, lateral)

well as between tip and palmar grasps is problematic. In contrast,
spherical and lateral are very well distinguishable from all the other
grasp types.

4.3 Discussion

It has been shown that grasp recognition based on uncalibrated data
glove sensor input can be performed in a very reliable way in spe-
ci�c scenarios, where the group of users that uses the systemand the
objects that are used during interaction are known in advance. Each
user would then need to train the system, by performing grasps for
each object occurring in the scenario.

For cases were either potential users are unknown or the grasped
objects are not determined in advance, with a recognition rate of
about 80%, still an acceptable performance can be achieved for ap-
plications where occasional misclassi�cations are not critical. This
might be the case for example public gaming or other entertainment
installations.

From the average performance of the examined classi�ers a list
of classi�cation algorithms that are suited best for the examined
problem domain has been compiled. Statistical signi�cancetests
suggest that these algorithms perform signi�cantly betterthan the
others in all examined settings. Furthermore, it can be seenthat
several classi�er categories are suited better for this problem do-
main than others. For example, whereas most function approxi-
mators perform reasonably well, Bayesian classi�ers in allcases
yielded unsatisfactory results. Similarly, most tree (with the excep-
tion of LMT and Random Forest) and rule-based classi�ers (with
the exception of NNge) resulted in comparably low recognition
rates when applied to the full problem of distinguishing between
all six Schlesinger grasps.

The overall best performing classi�er IB1, as indicated by the
confusion matrix in Table 6, is most prone to misclassi�cations be-
tween grasps of types palmar and tip, and resp., cylindricaland
hook. To a certain extent, these misclassi�cations can be attributed
to an inherently hard separability of these grasp types based on hand
shape only (cf. Sammon's Mapping in Section 3.3). However, an
examination of the confusion matrices of all classi�ers reveals that
certain classi�ers clearly outperform IB1 and the other classi�ers
when applied to the speci�c problem of distinguishing between
these hard cases only: For differentiating between tip and palmar
grasps, the REPTree and the rule-based ZeroR classi�er yielded sig-
ni�cantly better recognition rates than all other classi�ers. The best
separation of palmar and tip graps was achieved by the BayesNet
classi�er. These observations suggest that a clever combination of
classi�ers could lead to even higher recognitions rates.

A possibly surprising result was that, while LWL (Local
Weighted Learning) did not perform well, the other lazy evalua-
tion algorithms were shown to be the best choice of classi�ers in
the domain “grasp recognition from raw data glove sensor data”.



5 CONCLUSION

We introduced a systematic approach for the evaluation of classi-
�cation techniques for recognizing grasps performed with adata
glove. In particular, we distinguish between 6 settings that make
different assumptions about the user groups and objects to be
grasped. A large number of classi�ers was compared to draw in-
formed conclusions about achievable recognitions rates inthe dif-
ferent settings. Through this, our approach extends previous reports
on classi�er performance that focused on particular classi�ers and
settings.

An interesting result of our evaluation is that calibration-free
classi�cation of grasps can be performed with reasonable tohigh
reliability for a number of different settings. Surprisingly, algo-
rithms based on lazy learning outperform most of other algorithms
in this domain. With respect to the average classi�cation rate over
all settings, the IB1 (instance based learner) outperformed all other
tested algorithms. This is a suprising result, as lazy learners do
not perform any processing of the collected data, which supposedly
results in lower generalization ability. Considering the low com-
plexity of implementation, these algorithms seem to be wellsuited
for many VR applications. However, in applications with extreme
realtime demands, e.g. requiring over 1000 classi�cationsper sec-
ond, faster techniques such as the Multilayer Perceptron are better
suited. While the total average classi�cation rate of MLP'sin our
experiments was only less than 1% worse than that of IB1, it had
an approximately 35 times shorter runtime.

As indicated by the data analysis in section 3.3, the grasps of the
Schlesinger taxonomy are hard to distinguish based on hand shape
alone, e.g. palmar and tip. This makes classi�cation based on uncal-
ibrated sensor data – and, presumably, similarly for joint angles val-
ues – a challenging task. For our study, this had the advantage that
differences between the various classi�ers turned out moreclearly
in the analysis. To achieve better recognition rates, the inclusion
of higher level features such as �nger bending indexes or contact
points will be considered in future work. Other taxonomies with
clearer differences between classes in terms of hand poses might
also increase recognition rates.

As our results for evaluating the confusion matrices of classi-
�ers show (see section 4.3), some classi�ers perform betterat dis-
tinguishing speci�c grasp types than others. The strengthsof one
classi�er could compensate the weaknesses of another, so that their
combination into a well-tuned meta classi�er might lead to apow-
erful hybrid classi�cation scheme. In future work an in-depth eval-
uation of various hybrid and meta-classi�ers will be performed,
which might result in a classi�er that distinguishes well between
all grasp categories, even the ones which are more dif�cult to sep-
arate. A combination of IB1 (the best overall classi�er) with either
the ZeroR rules or the REPTree tree classi�er and additionally the
BayesNet classi�er would be a �rst recommendation. Addition-
ally a thorough parameter optimization process of the applied base
classi�ers might yield even higher recognition rates than the ones
presented here.

Concluding, we believe that the demonstrated approach of
calibration-free data glove operation combined with out-of-the-box
application of classi�ers from a freely available data mining soft-
ware package greatly simpli�es the usage of data gloves.
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